
Monte-Carlo simulation of
two-dimensional grain

growth

Author:
Christian Schmid

Matrikelnummer: 0704670
Studienkennzahl: 033 621

Supervisor:
Dr. Michael Leitner

November 25, 2011

Contents

1 Acknowledgements 1

2 Introduction 1

3 Implementation 1
3.1 Voronoi diagrams . 2
3.2 Metropolis algorithm . 2
3.3 Jumps . 3
3.4 Topological changes . 3
3.5 Problems . 5

4 Results and Conclusions 6

5 Outlook 15

1 Acknowledgements

I would like to thank Dr. Michael Leitner for his great supervision and for always
being available for helpful discussion. My colleague Markus Macher answered
many of my questions regarding the implementation of the simulation, and I
also want to thank my parents for funding my studies.

2 Introduction

Many systems in nature have a cellular structure: A ‘big‘ object can be described
as a network of smaller subdivisions – examples of this include fat eyes on a soup,
soap bubbles and grains in a polycrystalline material. Although the latter will
be used as a model example in the following simulation, the results can also be
applied to different situations.
Most of these systems have in common that the total boundary between the cells
is proportional to the energy of the systems, so a minimization of the energy
corresponds to a minimization of the boundaries; the least energy is ‘lost‘ if the
network consists only of one cell.
If the temperature of the system is positive, the minimization of the free energy,
which is a diffusive process, can be simulated using a Monte-Carlo method: We
introduce discrete time steps and decide stochastically at each step whether
some proposed state is accepted as a new state of the system. The probability
that this happens is given by a Boltzmann distribution.
We will specifically model a two-dimensional polycrystalline material; the atoms
in its cells share a common lattice orientation.

3 Implementation

The model we used for this system is a two-dimensional plane graph. Its regions
correspond to different grains, its edges to grain boundaries. To prevent surface
effects, periodic boundary conditions were assumed, and to simplify calculations,
all grains were supposed to have straight edges.

1

3.1 Voronoi diagrams

The initial data was constructed in the following way: N randomly distributed
sites are chosen in a periodic region. Assume that grains are growing around
each of these sites with the same speed, until they touch each other: The result
will be a tessellation of the region, where a cell consists of those points that
are closest to a fixed site – this is called a Voronoi tessellation. It is easy to
convince oneself that the corresponding graph is (in the non-degenerate case)
cubic; i.e., each vertex has exactly three neighbors. An example of such a
Voronoi tessellation can be seen in Fig. 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Periodic Voronoi tesselation generated by MATLAB

3.2 Metropolis algorithm

The actual simulation was implemented using a Metropolis algorithm: Assume
that you’re given a physical system with a set S of possible states, an energy
function E : S → R and an initial state Y0 = Y (t0) ∈ S at time t0. At each
step of the algorithm, a new state Y ′ is sampled from a proposal distribution
f(Y ′;Yn−1). Whether the perturbed state Y ′ is accepted as the new state Yn
depends on

∆E = E(Y ′)− E(Yn−1),

the energy difference between these configurations.
If ∆E < 0, the proposed state is accepted.
If ∆E > 0, one draws a uniformly distributed random number ξ ∈ [0, 1]. One

accepts the state if ξ < e−
∆E
kT , where T is the temperature of the system at time

tn−1 and k is Boltzmann’s constant. If ξ > e−
∆E
kT , one draws a new candidate

for Yn and repeats the test.

2

Thus, if we want to use this algorithm, we have to assume that the states of the
system form a Markov chain; i.e., the probability that a specific state will be
chosen is only dependent on the present state, not earlier ones.

3.3 Jumps

The energy function E in our case is the sum of all edge lengths in our graph;
the value β = 1

kT is given by a constant factor. To generate a proposal state
Y ′, we choose a random vertex and change its position by a small amount.

H x , y L

H x + Dx , y + Dy L

n1 n2

n3

Figure 2: Change in grain areas after a jump from (x, y) to(x+ ∆x, y + ∆y)

Because this step corresponds to a reorientation of atoms in a whole area (see
Fig. 2), we impose a fixed maximal amount of this area, AJ , for a valid jump.

3.4 Topological changes

Physical grains or grain boundaries cannot be arbitrarily small, so there are
some events where we have to check whether we need to change the topology of
our graph: These are called T1 and T2 events (see Fig. 3).

In a T1 event, the distance between two vertices A and B is very small (see
Fig. 4); we can see this as the situation where two grains, 1 and 2, ’collide’ and
separate the grains 3 and 4. Thus, we need to swap the edges such that grains
1 and 2 share a common boundary. We can do this in two ways: Either by
interchanging A1 with B1 or A2 with B2 – for other combinations, the resulting
graph would fail to be planar.
This step is done if the distance of A and B is smaller than a given, fixed
distance, and the Boltzmann condition for the corresponding change in the
energy is satisfied.
In a T2 event, the area of the triangle ABC (see Fig. 5) is so small that the
corresponding physical grain vanishes. Thus, if it is smaller than a fixed minimal

3

-T1

-T2

Figure 3: T1 and T2 events

1

2

3 4

A

B

A1
A2

B2

B1

-

1

2

3 4

A

B

A1
A2

B2

B1

Figure 4: T1 event

4

A

B

C

nA

nB

nC

-

A

nA

nB

nC

Figure 5: T2 event

area, Amin, the triangle is deleted and the vertex A inherits the neighbours nB
and nC .

3.5 Problems

Of course, a naive implementation of this algorithm will lead to some problems
that have to be fixed. First, we notice that the T1 event from Fig. 4 decreases
the number of sides of the grains 3 and 4 by one. Thus, this step cannot be
done if one of these polygons is a triangle. Our algorithm also breaks down in
the case of a double triangle (see Fig. 6).

A

B

C D

nA

nB

A

B

nA

nB

Figure 6: Double triangle before and after a T2 event

In this case, we directly connect vertex nA and nB , and delete both triangles.
Note that this situation can (seldom) occur iteratively; in this case, we connect
the two outermost vertices by a straight line.

5

Another problem is caused by the following effect: While the simulation is run-
ning, more and more grains are deleted. This implies that the mean edge length
increases, but in our algorithm, the average length of one jump is constant,
which means that the simulation ’slows down’. To prevent this, we rescale the
following variables at each step i of the simulation:

AJ(τi) = AJ(τ0)
n(τ0)

n(τi)
, (1)

Amin(τi) = Amin(τ0)
n(τ0)

n(τi)
, (2)

β(τi) = β(τ0)

√
n(τ0)

n(τi)
. (3)

Here, τi is the ’simulation time’ at which the i-th step is done, AJ(τi) is the
maximal allowed jump area, Amin(τi) is the minimum area under which a tri-
angle is deleted. The number n(τi) is the number of remaining vertices, and
β(τi) = 1

kT (τi)
is the thermodynamic factor occurring in the Boltzmann distri-

bution.
A simple calculation shows that we can keep track of the ’real’ time t by incre-

menting its value by
(
1
n

)3/2
at each step of the calculation.

4 Results and Conclusions

Taking these issues into account, the above algorithm was implemented in C
with an initial number of N := n(t0) = 106 nodes. The final runtime of the
simulation was about 20 minutes on an Intel Core 2 Duo T9400 processor.
In Fig. 7 you can see a section of the simulated graph for various values of
remaining nodes n. Here, 〈A〉 is the average grain area (which changes during
the simulation). Please note that this animation can only be viewed using a
PDF viewer that supports JavaScript, e.g. Adobe Reader.
First, we want to find out how the introduced real time t depends on the re-
maining number of vertices n. We assume that

t(n)− t0 =

∫ n

N

dt

dn
= α

n∫

N

−
√

1

n3
dn = α′(

1√
n
− 1√

N
)

for some constant α′. If we set t0 = 1, we expect α′ =
√
N . To check this, we

make a log-log plot of t versus
√

N
n (see Fig. 8).

We can see that the relationship is not fulfilled in the beginning of the simulation,
but the behavior looks as expected afterwards.
Minimization of the total energy corresponds to a configuration with as few
grains as possible. So we expect that, while some grains will grow bigger,
most of them will shrink until they disappear. We want to find whether the
growth rate correlates with the grain size. To measure this relationship, we let
the simulation run until half of the nodes (or half of the grains) disappeared,
so n(t1) = 500000. At this time t1, we measure the area of 1000 randomly

6

Figure 7: Animation of the simulation (use a JS enabled PDF viewer, click to
start)

selected grains. We then continue with the simulation until we see an evolution
caused by energy minimization, not just by a random walk. At this time t2,
each node jumped about 27 times and the remaining number of vertices was
n(t2) = 480000. We then plotted the area change A(t2) − A(t1) against the
initial area A(t1) (see Fig. 9). The values are scaled by 〈A〉, the average grain
area at time t1.
As expected, small grains tend to become smaller and disappear, bigger ones
tend to increase their size.
We are also interested in the relative growth rate, which lets us determine which

grains disappeared between t1 and t2. Thus, we plotted R := A(t2)−A(t1)
A(t1)

against

A(t1) (see Fig. 10).
Here, we can see that smaller grains shrink faster (relative to their size). This
should not be surprising, as the distance of a jump is independent of the sizes
of neighboring grains. As expected, all grains that vanished had a very small
initial area.

7

 1

 2

 4

 1 2 4√
N
n

t

Figure 8: Log-log plot of the time t vs. N
n

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.5 1 1.5 2 2.5 3 3.5 4

A(t1)/ 〈A〉

(A
(t

2
)
−
A
(t

1
))
/
〈A

〉

Figure 9: Absolute growth rate vs. size

Another interesting observable is the average distance between to neighboring
nodes. We obviously expect it to grow as n decreases, so we made a log-log plot

8

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.5 1 1.5 2 2.5 3 3.5 4

A(t1)/ 〈A〉

A
(t

2
)−

A
(t

1
)

A
(t

1
)

Figure 10: Relative growth rate vs. size

of these variables (see Fig. 11). Here, the scaling factor 〈A〉 is the average grain
area at time t0, with n(t0) = N .

 0.8

 1

 2

 3

 100000 200000 400000 600000 800000 1e+06

n

d
/
〈A

〉1 2

Figure 11: Log-log plot of the average distance d vs. the remaining number of
nodes n

We see that the average distance decreases in the beginning, but soon grows

9

 0.8

 1

 2

 3

 1 2 4

t

d
/
〈A

〉1 2

Figure 12: Log-log plot of the average distance d vs. time t

again – but as the log-log plot is non-linear, we cannot find an obvious relation-
ship between these variables. It might be more interesting to plot the average
distance against t (see Fig. 12). This is still not linear, but in the log-log plot,
the part in the middle has a slope of about 0.54, which suggest a square-root
relationship.

The average number of sides of the polygons is always 6. In Fig. 13 you can see
with which probability a randomly chosen polygon has a given number of sides.
We notice that the distributions are very similar for different values of n, until
the end, where the number of quadrilaterals increases significantly, and grains
with a higher number of edges become common.
Because we delete only triangles, we assume that polygons with a smaller num-
ber of sides have a smaller area. We can clearly see this in Fig. 14, where the
values for the areas are scaled by 〈A〉, the average grain size for n remaining
vertices. We also notice that triangles in the original Voronoi tessellation are
bigger, but shrink very fast.

10

3 4 5 6 7 8 9 10

0.05
0.10
0.15
0.20
0.25
0.30

n = 1000000

3 4 5 6 7 8 9 10

0.05
0.10
0.15
0.20
0.25
0.30

n = 900000

3 4 5 6 7 8 9 10

0.05
0.10
0.15
0.20
0.25
0.30

n = 800000

3 4 5 6 7 8 9 10

0.05
0.10
0.15
0.20
0.25
0.30

n = 700000

3 4 5 6 7 8 9 10

0.05
0.10
0.15
0.20
0.25
0.30

n = 600000

3 4 5 6 7 8 9 10

0.05
0.10
0.15
0.20
0.25
0.30

n = 500000

3 4 5 6 7 8 9 10

0.05
0.10
0.15
0.20
0.25
0.30

n = 400000

3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

0.25

n = 300000

3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

0.25

n = 200000

3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

n = 100000

Figure 13: Grain side number frequency for different values of n.

11

3 4 5 6 7 8 9 10

1

2

3

n = 1000000

3 4 5 6 7 8 9 10

1
2
3
4
5
6

n = 900000

3 4 5 6 7 8 9 10

1
2
3
4
5
6

n = 800000

3 4 5 6 7 8 9 10

1
2
3
4
5
6

n = 700000

3 4 5 6 7 8 9 10

1
2
3
4
5
6

n = 600000

3 4 5 6 7 8 9 10

1

2

3

4

5

n = 500000

3 4 5 6 7 8 9 10

1

2

3

4

5

n = 400000

3 4 5 6 7 8 9 10

1

2

3

4

5

n = 300000

3 4 5 6 7 8 9 10

1

2

3

4

5

n = 200000

3 4 5 6 7 8 9 10

1

2

3

4

n = 100000

Figure 14: Average size for polygons vs. their size for different values of n.

The theoretical relationship between a polygon’s growth rate and the number
of its sides is given by the Neumann-Mullins equation (cf. [1]):

dAn
dt

= K(n− 6), (4)

where K is a constant and An the area of a polygon with n sides. It has already
been noted in [2] that this relation is not observed in simulations with straight
edges. In Fig. 15, where 〈A〉 is again the average grain size at time t0, you can
see that it is not observed for the growth rate of 〈A〉 (but this cannot be deduced
from the Neumann-Mullins equation anyway): For example, Eq. (4) predicts
that a grain with 5 sides should shrink, but this only happens in the beginning;
then, at least their average size is increasing. The average sizes are also plotted
w.r.t. 1

n in Fig. 16, which shows an approximately linear relationship.

12

 0.01

 0.1

 1

 10

 100

 1 2 4

3 sides

4 sides

8 sides

9 sides

10 sides

5 sides

6 sides

7 sides

t

A
k
/
〈A

〉

Figure 15: Log-log plot of the average size Ak of a k-gon scaled by 〈A〉, the
average size of a grain at time t0, vs. t.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1e-06 2e-06 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05

3 sides

4 sides

5 sides

9 sides

10 sides

8 sides

6 sides

7 sides

1
n

A
k
/
〈A

〉

Figure 16: Average size Ak of a k-gon scaled by 〈A〉, the average size of a grain
at time t0, vs. 1

n .

13

To see whether the predictions of Eq. (4) hold for individual grains, we can
look at the distributions of the growth rate of all polygons for each number of
sides separately; this was done in Fig. 17 and combines data of 10 runs of the
simulation with 106 initial grains each, the growth rate was calculated as in
Fig. 10.
Here we see that most grains with less than six sides have a decreasing area,
while those with more than six sides mostly increase in size.
To see how many grains of different sizes there are, we plotted the area distri-
bution in Fig. 18. The graph for polygons with five sides or less does not have
a local maximum. It seems that most of the grains would have already dis-
appeared in nature, but still need to undergo some topological transformation
until they are removed in the simulation.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

-1 -0.5 0 0.5 1

3 sides

4 sides

5 sides

6 sides

7 sides

8 sides

9 sides

10 sides

Rk

f
(R

k
)

Figure 17: Frequency f(Rk) of the relative growth rate Rk = Ak(t2)−Ak(t1)
Ak(t1)

of

k-gons

14

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.5 1 1.5 2 2.5 3 3.5 4

3 sides

4 sides

5 sides

6 sides

7 sides

8 sides

9 sides

10 sides

Ak/〈A〉

f
(A

k
)

Figure 18: Frequency f(Ak) of k-gon areas scaled by average area 〈A〉.

5 Outlook

The most obvious shortcoming of the model is that it doesn’t allow curved
boundaries. These could be approximated by introducing some additional points
on edges and using them, for example, as B-spline control points. The problem
of the disproportionate amount of quadrilaterals and small polygons with five
sides at the end of the simulation could be caused by complicated topological
situations; the author thinks that a better algorithm for dealing with double
triangles could resolve this.

References

[1] W. W. Mullins. Two-Dimensional Motion of Idealized Grain Boundaries.
Journal of Applied Physics, 27:900–904, August 1956.

[2] J.A. Glazier and D. Weaire. The kinetics of cellular patterns. Journal of
Physics: Condensed Matter, 4:1867, 1992.

15

	Acknowledgements
	Introduction
	Implementation
	Voronoi diagrams
	Metropolis algorithm
	Jumps
	Topological changes
	Problems

	Results and Conclusions
	Outlook

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	anm0:

