| Crystal Lattice Structures: | Creation Date: 26 May 2003 | 
| Last Modified: 21 Oct 2004 | 
You can now
ahex = 2 a sin ½ θ and
chex = a [3 (1 + 2 cos θ)]½
If you substitute these values into the primitive vectors you will see that they all have length a, and that the angle between any two of them is θ.
| Index | Wyckoff Notation | Internal Parameters | 
|---|---|---|
| j = 1 | (12i) | (x1,y1,z1) | 
| j = 2 | (12i) | (x2,y2,z2) | 
| j = 3 | (12i) | (x3,y3,z3) | 
| j = 4 | (12i) | (x4,y4,z4) | 
| j = 5 | (6h) | (x5,z5) | 
| j = 6 | (6h) | (x6,z6) | 
| j = 7 | (6h) | (x7,z7) | 
| j = 8 | (6h) | (x8,z8) | 
| j = 9 | (6h) | (x9,z9) | 
| j = 10 | (6h) | (x10,z10) | 
| j = 11 | (6h) | (x11,z11) | 
| j = 12 | (6h) | (x12,z12) | 
| j = 13 | (6h) | (x13,z13) | 
| j = 14 | (2c) | z14 | 
| j = 15 | (1b) | none | 
| A1 | = | + ½ ahex X - ½ 12-½ ahex Y + 1/3 chex Z | 
| A2 | = | + 3-½ ahex Y + 1/3 chex Z | 
| A3 | = | - ½ ahex X - ½ 12-½ ahex Y + 1/3 chex Z | 
| j = 1-4: | Bj(1) | = | + xj A1 + yj A2 + zj A2 | = | + ½ (xj - zj) ahex X - 12-½ (xj - 2 yj + zj) ahex Y + 1/3 (xj + yj + zj) chex Z | (12i) | 
| Bj(2) | = | + yj A1 + zj A2 + xj A2 | = | + ½ (yj - xj) ahex X - 12-½ (yj - 2 zj + xj) ahex Y + 1/3 (xj + yj + zj) chex Z | ||
| Bj(3) | = | + zj A1 + xj A2 + yj A2 | = | + ½ (zj - yj) ahex X - 12-½ (zj - 2 xj + yj) ahex Y + 1/3 (xj + yj + zj) chex Z | ||
| Bj(4) | = | + zj A1 + yj A2 + xj A2 | = | + ½ (zj - xj) ahex X - 12-½ (zj - 2 yj + xj) ahex Y + 1/3 (xj + yj + zj) chex Z | ||
| Bj(5) | = | + yj A1 + xj A2 + zj A2 | = | + ½ (yj - zj) ahex X - 12-½ (yj - 2 xj + zj) ahex Y + 1/3 (xj + yj + zj) chex Z | ||
| Bj(6) | = | + xj A1 + zj A2 + yj A2 | = | + ½ (xj - yj) ahex X - 12-½ (xj - 2 zj + yj) ahex Y + 1/3 (xj + yj + zj) chex Z | ||
| Bj(7) | = | - xj A1 - yj A2 - zj A2 | = | - ½ (xj - zj) ahex X + 12-½ (xj - 2 yj + zj) ahex Y - 1/3 (xj + yj + zj) chex Z | ||
| Bj(8) | = | - yj A1 - zj A2 - xj A2 | = | - ½ (yj - xj) ahex X + 12-½ (yj - 2 zj + xj) ahex Y - 1/3 (xj + yj + zj) chex Z | ||
| Bj(9) | = | - zj A1 - xj A2 - yj A2 | = | - ½ (zj - yj) ahex X + 12-½ (zj - 2 xj + yj) ahex Y - 1/3 (xj + yj + zj) chex Z | ||
| Bj(10) | = | - zj A1 - yj A2 - xj A2 | = | - ½ (zj - xj) ahex X + 12-½ (zj - 2 yj + xj) ahex Y - 1/3 (xj + yj + zj) chex Z | ||
| Bj(11) | = | - yj A1 - xj A2 - zj A2 | = | - ½ (yj - zj) ahex X + 12-½ (yj - 2 xj + zj) ahex Y - 1/3 (xj + yj + zj) chex Z | ||
| Bj(12) | = | - xj A1 - zj A2 - yj A2 | = | - ½ (xj - yj) ahex X + 12-½ (xj - 2 zj + yj) ahex Y - 1/3 (xj + yj + zj) chex Z | ||
| j = 5-13: | Bj(1) | = | + xj A1 + xj A2 + zj A2 | = | + ½ (xj - zj) ahex X + 12-½ (xj - zj) ahex Y + 1/3 (2 xj + zj) chex Z | (6h) | 
| Bj(2) | = | + xj A1 + zj A2 + xj A2 | = | - 12-½ (xj - zj) ahex Y + 1/3 (2 xj + zj) chex Z | ||
| Bj(3) | = | + zj A1 + xj A2 + xj A2 | = | - ½ (xj - zj) ahex X + 12-½ (xj - zj) ahex Y + 1/3 (2 xj + zj) chex Z | ||
| Bj(4) | = | - xj A1 - xj A2 - zj A2 | = | - ½ (xj - zj) ahex X - 12-½ (xj - zj) ahex Y - 1/3 (2 xj + zj) chex Z | ||
| Bj(5) | = | - xj A1 - zj A2 - xj A2 | = | + 12-½ (xj - zj) ahex Y - 1/3 (2 xj + zj) chex Z | ||
| Bj(6) | = | - zj A1 - xj A2 - xj A2 | = | + ½ (xj - zj) ahex X - 12-½ (xj - zj) ahex Y - 1/3 (2 xj + zj) chex Z | ||
| j = 14: | Bj(1) | = | + xj A1 + xj A2 + xj A2 | = | + xj chex Z | (2c) | 
| Bj(2) | = | - xj A1 - xj A2 - xj A2 | = | - xj chex Z | ||
| j = 15: | Bj(1) | = | + ½ A1 + ½ A2 + ½ A2 | = | + ½ chex Z | (1b) | 
Go back to the IIIb-VIIb elements structures page.
Go back to Crystal Lattice Structure page.
| Structures indexed by: | This is a mirror of an old page created at the Naval Research Laboratory Center for Computational Materials Science The maintained successor is hosted at http://www.aflowlib.org/CrystalDatabase/ and published as M. Mehl et al., Comput. Mater. Sci. 136 (Supp.), S1-S828 (2017). |